RKNN Benchmarks
Description
This benchmark compares the performance of four object detection models: YOLOv5, YOLOv5u, YOLOv8, and YOLOv11 on the COCO 2017 Validation Set. The main purpose is to assess and compare the inference speed and detection accuracy of these models when deployed on the Orange Pi devices using the RKNN framework and int8 quantization.
Methodology
Dataset: COCO 2017 Validation Set (5,000 images)
Platform: Orange Pi 5 with RK3588
Quantization: int8 using 20 randomly selected images from the validation set
Framework: RKNN Toolkit 2
Operator-Level Benchmark Results
The following tables break down the average CPU time, NPU time, and total execution time (in microseconds) for each operator used by the models. Each value represents the mean ± standard deviation across 5,000 inferences.
YOLOv5
OpType |
CPU Time (μs) |
NPU Time (μs) |
Total Time (μs) |
Time Ratio (%) |
Number of Times Called |
|---|---|---|---|---|---|
ConvExSwish |
0.00 ± 0.00 |
10968.81 ± 1126.00 |
10968.81 ± 1126.00 |
73.06 ± 0.94 |
57 |
ConvSigmoid |
0.00 ± 0.00 |
1243.49 ± 67.66 |
1243.49 ± 67.66 |
8.33 ± 0.57 |
3 |
Concat |
0.00 ± 0.00 |
1080.68 ± 259.40 |
1080.68 ± 259.40 |
7.09 ± 0.87 |
13 |
Conv |
0.00 ± 0.00 |
732.15 ± 29.42 |
732.15 ± 29.42 |
4.92 ± 0.42 |
1 |
Add |
0.00 ± 0.00 |
473.71 ± 131.48 |
473.71 ± 131.48 |
3.10 ± 0.50 |
7 |
MaxPool |
0.00 ± 0.00 |
272.40 ± 110.52 |
272.40 ± 110.52 |
1.76 ± 0.51 |
6 |
Resize |
0.00 ± 0.00 |
147.61 ± 38.89 |
147.61 ± 38.89 |
0.97 ± 0.15 |
2 |
OutputOperator |
106.60 ± 15.00 |
0.00 ± 0.00 |
106.60 ± 15.00 |
0.72 ± 0.13 |
3 |
InputOperator |
8.64 ± 1.79 |
0.00 ± 0.00 |
8.64 ± 1.79 |
0.06 ± 0.02 |
1 |
Total |
115.24 ± 16.16 |
14918.85 ± 1735.45 |
15034.09 ± 1734.28 |
93 |
YOLOv5u
OpType |
CPU Time (μs) |
NPU Time (μs) |
Total Time (μs) |
Time Ratio (%) |
Number of Times Called |
|---|---|---|---|---|---|
ConvExSwish |
0.00 ± 0.00 |
16828.24 ± 1332.73 |
16828.24 ± 1332.73 |
83.04 ± 1.61 |
69 |
Concat |
0.00 ± 0.00 |
1265.94 ± 250.24 |
1265.94 ± 250.24 |
6.17 ± 0.69 |
13 |
ConvSigmoid |
0.00 ± 0.00 |
613.88 ± 62.97 |
613.88 ± 62.97 |
3.03 ± 0.15 |
3 |
Add |
0.00 ± 0.00 |
553.75 ± 131.17 |
553.75 ± 131.17 |
2.69 ± 0.44 |
7 |
Conv |
0.00 ± 0.00 |
298.61 ± 72.72 |
298.61 ± 72.72 |
1.45 ± 0.25 |
3 |
ConvClip |
0.00 ± 0.00 |
256.02 ± 64.48 |
256.02 ± 64.48 |
1.24 ± 0.23 |
3 |
MaxPool |
0.00 ± 0.00 |
178.68 ± 58.72 |
178.68 ± 58.72 |
0.86 ± 0.23 |
3 |
Resize |
0.00 ± 0.00 |
170.87 ± 40.14 |
170.87 ± 40.14 |
0.83 ± 0.13 |
2 |
OutputOperator |
126.89 ± 16.53 |
0.00 ± 0.00 |
126.89 ± 16.53 |
0.63 ± 0.10 |
9 |
InputOperator |
8.69 ± 1.45 |
0.00 ± 0.00 |
8.69 ± 1.45 |
0.04 ± 0.01 |
1 |
Total |
135.57 ± 17.51 |
20165.99 ± 1963.70 |
20301.56 ± 1965.88 |
113 |
YOLOv8
OpType |
CPU Time (μs) |
NPU Time (μs) |
Total Time (μs) |
Time Ratio (%) |
Number of Times Called |
|---|---|---|---|---|---|
ConvExSwish |
0.00 ± 0.00 |
13017.04 ± 1165.76 |
13017.04 ± 1165.76 |
75.66 ± 1.96 |
57 |
Concat |
0.00 ± 0.00 |
1489.94 ± 257.22 |
1489.94 ± 257.22 |
8.58 ± 0.53 |
13 |
Split |
0.00 ± 0.00 |
681.47 ± 166.62 |
681.47 ± 166.62 |
3.89 ± 0.53 |
8 |
ConvSigmoid |
0.00 ± 0.00 |
596.08 ± 75.01 |
596.08 ± 75.01 |
3.45 ± 0.18 |
3 |
Add |
0.00 ± 0.00 |
443.60 ± 118.05 |
443.60 ± 118.05 |
2.53 ± 0.41 |
6 |
Conv |
0.00 ± 0.00 |
269.61 ± 78.65 |
269.61 ± 78.65 |
1.54 ± 0.30 |
3 |
Resize |
0.00 ± 0.00 |
236.79 ± 37.74 |
236.79 ± 37.74 |
1.37 ± 0.08 |
2 |
ConvClip |
0.00 ± 0.00 |
231.82 ± 68.44 |
231.82 ± 68.44 |
1.32 ± 0.27 |
3 |
MaxPool |
0.00 ± 0.00 |
156.85 ± 56.94 |
156.85 ± 56.94 |
0.89 ± 0.23 |
3 |
OutputOperator |
124.86 ± 20.74 |
0.00 ± 0.00 |
124.86 ± 20.74 |
0.73 ± 0.15 |
9 |
InputOperator |
8.47 ± 1.66 |
0.00 ± 0.00 |
8.47 ± 1.66 |
0.05 ± 0.01 |
1 |
Total |
133.33 ± 21.95 |
17123.19 ± 1985.72 |
17256.52 ± 1986.77 |
108 |
YOLOv11
OpType |
CPU Time (μs) |
NPU Time (μs) |
Total Time (μs) |
Time Ratio (%) |
Number of Times Called |
|---|---|---|---|---|---|
ConvExSwish |
0.00 ± 0.00 |
16034.00 ± 1331.95 |
16034.00 ± 1331.95 |
69.90 ± 1.55 |
77 |
Concat |
0.00 ± 0.00 |
1888.89 ± 293.99 |
1888.89 ± 293.99 |
8.17 ± 0.51 |
17 |
exSDPAttention |
0.00 ± 0.00 |
1210.88 ± 17.73 |
1210.88 ± 17.73 |
5.32 ± 0.52 |
1 |
Split |
0.00 ± 0.00 |
908.30 ± 183.92 |
908.30 ± 183.92 |
3.91 ± 0.45 |
10 |
Add |
0.00 ± 0.00 |
871.64 ± 212.79 |
871.64 ± 212.79 |
3.73 ± 0.60 |
12 |
ConvSigmoid |
0.00 ± 0.00 |
617.61 ± 59.61 |
617.61 ± 59.61 |
2.69 ± 0.16 |
3 |
Conv |
0.00 ± 0.00 |
419.72 ± 89.88 |
419.72 ± 89.88 |
1.80 ± 0.24 |
5 |
Resize |
0.00 ± 0.00 |
272.09 ± 49.91 |
272.09 ± 49.91 |
1.18 ± 0.12 |
2 |
ConvClip |
0.00 ± 0.00 |
260.08 ± 59.12 |
260.08 ± 59.12 |
1.12 ± 0.18 |
3 |
MaxPool |
0.00 ± 0.00 |
181.93 ± 53.32 |
181.93 ± 53.32 |
0.78 ± 0.18 |
3 |
OutputOperator |
131.48 ± 22.93 |
0.00 ± 0.00 |
131.48 ± 22.93 |
0.58 ± 0.12 |
9 |
ConvAdd |
0.00 ± 0.00 |
126.79 ± 35.28 |
126.79 ± 35.28 |
0.54 ± 0.11 |
2 |
Reshape |
0.00 ± 0.00 |
56.61 ± 18.03 |
56.61 ± 18.03 |
0.24 ± 0.06 |
3 |
InputOperator |
8.66 ± 1.59 |
0.00 ± 0.00 |
8.66 ± 1.59 |
0.04 ± 0.01 |
1 |
Total |
140.14 ± 24.26 |
22848.54 ± 2351.95 |
22988.68 ± 2355.97 |
148 |
Model Summary and Accuracy Metrics
The table below summarizes the mean average precision (mAP) and total inference time for each model. These metrics provide a high-level view of how each model performs in terms of both detection accuracy and runtime efficiency.
Mean Average Precision (mAP) by Model
Metric |
YOLOv5 |
YOLOv5u |
YOLOv8 |
YOLOv11 |
|---|---|---|---|---|
mAP |
0.2243 |
0.2745 |
0.3051 |
0.3251 |
mAP50 |
0.3538 |
0.3834 |
0.4145 |
0.4406 |
mAP75 |
0.2432 |
0.2997 |
0.3349 |
0.3568 |
mAP85 |
0.3054 |
0.3472 |
0.3867 |
0.4068 |
mAP95 |
0.3708 |
0.4822 |
0.5483 |
0.5858 |
Model Execution Time and Call Frequency
Model |
Total Time (μs) |
Number of Processing Calls |
|---|---|---|
YOLOv5 |
15034.09 ± 1734.28 |
93 |
YOLOv5u |
20301.56 ± 1965.88 |
113 |
YOLOv8 |
17256.52 ± 1986.77 |
108 |
YOLOv11 |
22988.68 ± 2355.97 |
148 |
Conclusion
The benchmark reveals a clear performance trade-off between inference time and detection accuracy:
YOLOv5 is the fastest model with the lowest total inference time, making it well-suited for situations where speed is more important than high detection precision.
YOLOv11 achieves the highest accuracy (mAP) across all IoU thresholds but comes with the longest inference time, which may limit its use in real-time applications.
YOLOv8 offers a strong balance between speed and accuracy, making it a practical choice when both factors matter.
YOLOv5u improves accuracy compared to YOLOv5 but falls behind YOLOv8 in both speed and detection quality.
When choosing a model for edge devices like the Orange Pi 5, it’s important to weigh how much latency your system can tolerate versus how much accuracy you need. A faster model may give quicker results, while a more accurate one may offer better detection reliability, but at the cost of speed.